(Affiliated to J.N.T.U., Anantapur & Approved by AICTE, New Delhi, Accredited by NEA-AICTE) KAVALI - 524 201, S.P.S.R. Nellore Dist., A.P., India. @ 08626 - 243930 # *2.5.1* Mechanism of internal assessment is transparent and robust in terms of frequency and mode # Jawaharlal Nehru Technological University Anantapur (Established by Govt. of A.P., Act. No. 30 of 2008) Ananthapuramu-515 002 (A.P) India # Academic Regulations (R19) for B. Tech (Regular-Full time) (Effective for the students admitted into I year from the Academic Year **2019-2020** onwards) and # Academic Regulations (R19) for B.Tech (Lateral Entry Scheme) (Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year **2020-2021** onwards) #### 1. Award of B. Tech. Degree A student will be declared eligible for the award of the B.Tech. degree if he/she fulfils the following academic regulations: - i) Pursues a course of study for not less than four academic years and not more than eight academic years. However, for the students availing Gap year facility this period shall be extended by two years at the most and these two years would not be counted in the maximum period permitted for graduation. - ii) Registers for 160 credits and secures all 160 credits. - iii) A student will be eligible to get Under Graduate degree with Honours or one Minor Engineering, if he/she completes an additional 20 credits. - iv) A student will be permitted to register either for Honours degree or one Minor Engineering but not both. - Students, who fail to fulfil all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled. # 3. Programs offered by the University: The following programs are offered at present as specializations for the B. Tech. course for non-autonomous, constituent & affiliated colleges from 2019-2020. | S. No. | Name of the Program | Program Code | |--------|---|--------------| | 1. | Civil Engineering | 01 | | 2. | Electrical and Electronics Engineering | 01 | | 3. | Mechanical Engineering | 02 | | 4. | Electronics and Communication Engineering | 03 | | 5. | Computer Science and Engineering | 05 | | 6. | Electronics and Instrumentation Engineering | 10 | | 7. 6 | Information Technology | 10 | | 8. | Food Technology | 27 | and any other course as approved by the authorities of the University from time to time. ### 4. About Program related terms: - Credit: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture/Tutorial) or two hours of practical work/field work per week. - ii. Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year. - iii. Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed courses. - iv. Each course is assigned certain number of credits based on following criterion: Principal PARVATHAREDDY BABUL REDDY VISYODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist, Andhrapradesh. | | Semes | ter | |---------------------------|----------------|---------| | | Periods / Week | Credits | | | 02 | 02 | | | 03 | 03 | | Theory (Lecture/Tutorial) | 04 | 04 | | * | 02 | 01 | | Practical | 03 | 1.5 | | | 04 | 02 | | Project stage - I | 04 | 02 | | Project stage – II | 14 | 07 | #### 5. Weights for Course Evaluation: #### 5.1 Course Pattern: - The entire course of study is for four academic years. Semester pattern shall be followed in all the academic years - A student eligible to appear for the end examination in a subject, but absent or has failed in the end examination may appear for that subject at the next supplementary examination when offered. - When a student is detained due to lack of credits/shortage of attendance he/she may be re-admitted when the semester is offered after fulfilment of academic regulations. In such case, he/she shall be in the academic regulations into which he/she is readmitted. #### 5.2 Evaluation Process: The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. Project stage-I, Socially relevant project and Internship shall be evaluated for 50 marks each & Project stage-II shall be evaluated for 200 marks whereas mandatory courses with no credits shall be evaluated for 30 mid semester marks. - For theory subjects the distribution shall be 30 marks for mid semester Evaluation and 70 marks for the End-Examination. - For practical subjects the distribution shall be 30 marks for mid semester Evaluation and 70 marks for the End- Examination. - iii. If any subject is having both theory and practical components, they will be evaluated separately as theory subject and practical subject. However, they will be given same subject code with an extension of 'T' for theory subject and 'P' for practical subject. #### 5.3 Mid Semester Examination Evaluation: For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination shall be evaluated for 30 marks of which 10 marks for objective paper (20 minutes duration), 15 marks for subjective paper (90 minutes duration) and 5 marks for assignment. Principal Objective paper shall be set for maximum of 20 bits for 10 marks. Subjective paper shall contain 3 either or type questions (totally six questions from 1 to 6) of which student has to answer one from each either or type question. Each question carries 5 marks. - *Note 1: The subjective paper shall contain 6 questions of equal weightage of 5 marks. Any fraction (0.5 & above) shall be rounded off to the next higher mark. - *Note 2: The Objective paper shall be conducted online by the University on the day of subjective paper test. - *Note 3: The assignment shall contains 5 questions of equal weightage of 1 mark each. If the student is absent for the mid semester examination, no re-exam shall be conducted and mid semester marks for that examination shall be considered as zero. First midterm examination shall be conducted for I, II units of syllabus with one either or type question from each unit and third either or type question from both the units. The second midterm examination shall be conducted for III, IV and V units with one either or type question from each unit. Final mid semester marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage given to the better mid exam and 20% to the other. For Example: Marks obtained in first mid : 25 Marks obtained in second mid : 20 Final mid semester Marks: (25x0.8) + (20x0.2) = 24 If the student is absent for any one midterm examination, the final mid semester marks shall be arrived at by considering 80% weightage to the marks secured by the student in the appeared examination and zero to the other. For Example: Marks obtained in first mid : Absent Marks obtained in second mid : 25 Einal mid semester Marks: (25x0.8)+ (0x0.2) = 20 #### 5.4 End Examination Evaluation: i. End examination of theory subjects shall have the following pattern: There shall be 6 questions and all questions are compulsory. b. Question I shall contain 10 compulsory short answer questions for a total of 20 marks such that each question carries 2 marks. There shall be 2 short answer questions from each unit. c. In each of the questions from 2 to 6, there shall be either/or type questions of 10 marks each. Student shall answer any one of them. d. The questions from 2 to 6 shall be set by covering one unit of the syllabus for each question. # JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., Act. No. 30 of 2008) ANANTHAPURAMU-515 002 (A.P) INDIA ## Academic Regulations (R15) for B. Tech (Regular-Full time) & (Effective for the students admitted into I year from the Academic Year 2015-2016 onwards) ### 1. Award of B.Tech. Degree A student will be declared eligible for the award of the B. Tech. degree if he/she fulfils the following academic regulations: - i. Pursues a course of study for not less than four academic years and in not more than eight academic years. However, for the students availing Gap year facility this period shall be extended by two years at the most and these two years would not be counted in the maximum time permitted for graduation. - ii. Registers for 176 credits and secures all 176 credits. - Students, who fail to fulfill all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled. #### 3. Courses of study The following courses of study are offered at present as specializations for the B. Tech. course for non-autonomous, constituent & affiliated colleges from 2015-16 | 700, | | |---|--| | Name of the Branch | Branch Code | | | 01 | | Electrical and Electronics Engineering | 02 | | | 03 | | Electronics and Communication Engineering | 04 | | Computer Science and Engineering | 05 | | Electronics and Instrumentation Engineering | 10 | | Information Technology | 12 | | | Name of the Branch Civil Engineering Electrical and Electronics Engineering Mechanical Engineering Electronics and Communication Engineering Computer Science and Engineering Electronics and Instrumentation Engineering Information Technology | and any other course as approved by the authorities of the University from time to time. #### 4. Credits: Credit: A
unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (Lecture) or two hours of practical work/field work per week. ii. Academic Year: Two consecutive (one odd + one even) semesters constitute one academic year. iii. Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed courses. Page 1 iv. Each course is assigned certain number of credits based on following | | Semes | ter | |-------------------------|----------------|---------| | 7914 | Periods / Week | Credits | | Theory | 03 | 03 | | Practical | 04 | 02 | | Comprehensive Viva-Voce | | 02 | | Technical Seminar | | 02 | | Project Work | 20/24 | 10/12 | # 5. Distribution and Weightage of Marks - 5.1 The performance of a student in each semester shall be evaluated subject wise with a maximum of 100 marks for theory and 100 marks for practical subject. In addition, Comprehensive Viva-Voce & Technical Seminar will be evaluated for 50 marks each and Project work shall be evaluated for 200 marks whereas audit courses shall be evaluated for a maximum of 30 internal marks. - For theory subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination. - For practical subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End- Examination. #### 5.2. Internal Examinations: For theory subjects, during the semester, there shall be two midterm examinations. Each midterm examination consists of objective paper for 10 marks and subjective paper for 20 marks with duration of 1hour 50 minutes (20 minutes for objective and 90 minutes for subjective paper). Objective paper shall be set for maximum of 20 bits for 10 marks. Subjective paper shall contain 5 questions of which student has to answer 3 questions evaluated* for 20 marks. *Note 1: The subjective paper shall contain 5 questions of equal weightage of 10 marks and the marks obtained for 3 questions shall be condensed to 20 marks, any fraction (0.5 & above) shall be rounded off to the next higher mark. *Note 2: The midterm examination shall be conducted first by distribution of the Objective paper, simultaneously marking the attendance, after 20 minutes the answered objective paper shall be collected back. The student is not allowed to leave the examination hall. Then the descriptive question paper and the answer booklet shall be distributed. After 90 minutes the answered booklets are collected back. If the student is absent for the internal examination, no re-exam shall be conducted and internal marks for that examination shall be considered as zero. First midterm examination shall be conducted for I, II units of syllabus and second midterm examination shall be conducted for III, IV and V units. Final Internal marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage to the better mid exam and 20% to the other. Principal For eg: Marks obtained in first mid : 25 Marks obtained in second mid : 20 Final Internal Marks: (25x0.8) + (20x0.2) = 24 If the student is absent for any one midterm examination, the final internal marks shall be arrived at by considering 80% weightage to the marks secured by the student in the appeared examination and zero to the other. For eg: Marks obtained in first mid : Absent Marks obtained in second mid : 25 Final Internal Marks: (25x0.8)+ (0x0.2) = 20 ### 5.3. End Examinations: i. End examination of theory subjects shall have the following pattern: There shall be 6 questions and all questions are compulsory. - Question I shall contain 10 compulsory short answer questions for a total of 20 marks such that each question carries 2 marks. There shall be 2 short answer questions from each unit. - c. In each of the questions from 2 to 6, there shall be either/or type questions of 10 marks each. Student shall answer any one of them. - d. Each of these questions from 2 to 6 shall cover one unit of the syllabus. - ii. End examination of theory subjects consisting of two parts of different subjects, for eg: Electrical & Mechanical Technology, shall have the following pattern: - a. Question paper shall be in two parts viz., Part A and Part B with equal Weightage. - b. In each part, there shall be 3 either-or type questions for 12, 12 and 11 marks. Note: The answers for Part A and Part B shall be written in two separate answer books. - 5.4. For practical subjects there shall be a continuous evaluation during the semester for 30 sessional marks and end examination shall be for 70 marks. Day-to-day work in the laboratory shall be evaluated for 30 marks by the concerned laboratory teacher based on the regularity/record/ viva. The end examination shall be conducted by the concerned laboratory teacher and senior expert in the same subject of the department. In a practical subject consisting of two parts (Eg: Electrical & Mechanical Lab), the end examination shall be conducted for 35 marks in each part. Internal examination shall be evaluated as above for 30 marks in each part and final internal marks shall be arrived by considering the average of marks obtained in two parts. - 5.5. There shall be an audit pass course in Social Values & Ethics and Advanced English Language Communication skills lab with no credits. There shall be no external examination. However, attendance in the audit course shall be considered while calculating aggregate attendance and student shall be declared pass in the audit course only when he/she secures 40% or more in the internal examinations. In case if student fails, re-exam shall be conducted for failed candidates every six months/semester at a mutual convenient date of college/student satisfying the conditions mentioned in item 1 & 2 of the regulations. - 5.6. For the subject having design and/or drawing, such as Engineering Drawing, the distribution shall be 30 marks for internal evaluation and 70 marks for end examination. Day-to-day work shall be evaluated for 15 marks by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm examinations in a Page 3 semester for duration of 2 hours each for 15 marks with weightage of 80% to better mid marks and 20% for the other. The subjective paper shall contain 5 questions of equal weightage of 10 marks and the marks obtained for 3 questions shall be condensed to 15 marks, any fraction (0.5 & above) shall be rounded off to the next higher mark. There shall be no objective paper in internal examination. The sum of day to day evaluation and the internal test marks will be the final sessional marks for the subject. In the end examination pattern for Engineering Drawing there shall be 5 questions, either/or type, of 14 marks each. There shall be no objective type questions in the end examination. However, the end examination pattern for other subjects related to design/drawing is mentioned along with the syllabus. - 5.7 There shall be two comprehensive online examinations conducted by the respective colleges, one at the end of II year and the other at the end of III year, with 100 objective questions for 100 marks on the subjects studied in the respective semesters. For each subject at least eight questions are to be framed. The Principals of the respective colleges are given the responsibility of preparing question bank/question paper and conducting the online examination maintaining confidentiality. A student shall acquire 1 credit assigned to each of the comprehensive online examination when he/she secures 40% or more marks. In case, if a student fails in comprehensive online examination, he/she shall reappear/re-register by following a similar procedure adopted for the lab examinations. - 5.8 Laboratory marks and the sessional marks awarded by the college are not final. They are subject to scrutiny and scaling by the University wherever necessary. In such cases, the sessional and laboratory marks awarded by the college will be referred to a committee. The committee will arrive at a scaling factor and the marks will be scaled as per the scaling factor. The recommendations of the Committee are final and binding. - 5.9 The laboratory records and internal test papers shall be preserved for a minimum of 2 years in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for. - 5.10. There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) in III year I semester and in IV year II semester. Where in the student shall register the course (Minimum of 40 hours) offered by authorized institutions/Agencies, through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered and the mentor appointed shall conduct the internal examinations following the guidelines given in 5.2. Further, the University shall conduct the external examination for the MOOC subject in line with other regular subjects (5.3) based on the syllabi of the respective subject provided in the curriculum. MOOCs courses may be studied either in MOOCs manner or in conventional manner. - 5.11. There shall be an Open Elective/Choice Based Credit Course (CBCC) in III year II semester, where in the students have to choose an elective offered by various departments including his/her own department. - 5.12. Minor in a discipline (Minor degree/programme) concept is introduced in the curriculum for all conventional B. Tech programmes in which it offers a major. The main objective of Minor in a discipline is to provide additional learning opportunities for academically motivated students and it is an optional feature of the B. Tech. programme. In order to earn a Minor in a discipline a student has to earn 20 extra credits by studying four theory
subjects and a minor discipline project. a. Students who have a CGPA 8.5 (for SC/ST students CGPA 8.0) or above (up to II year-I semester) and without any backlog subjects will be permitted to register for Minor discipline programme. An SGPA and CGPA of 8.0 has to be maintained in the subsequent semesters without any backlog Page 4 Principal subjects in order to keep the Minor discipline registration active else Minor discipline registration will be cancelled. b. Students aspiring for a Minor must register from third year first semester onwards and must opt for a Minor in a discipline other than the discipline he/she is registered in. However, Minor discipline registrations are not allowed in the Fourth year. c. Students are not allowed to register and pursue more than two subjects in any semester. Students may register for minor discipline project from third year first semester onwards and may complete the same before fourth year second semester. d. Each department enlisted a set of subjects from its curriculum which are core for the discipline without any prerequisites. The Evaluation pattern of theory subjects and minor discipline project work will be similar to the regular programme evaluation. The minor discipline project shall be evaluated by the committee consisting of Head of the Department along with the two senior faculty members of the department. e. Students are not allowed to pursue minor discipline programme subjects under Self study and/or MOOCs manner. f. Student may enlist their choices of Minor discipline programmes in order of preference, to which they wish to join. It will not be permissible to after the choices after the application has been submitted. However, students are allowed to opt for only one Minor discipline programme in the order of preference given by the student. g. Minimum strength for offering Minor in a discipline is considered as One-Fifth (i.e., 20% of the class) of the class size and Maximum size would be Four-Fifth of Class size (i.e., 80% of the class). h. Completion of a Minor discipline programme requires no addition of time to the regular Four year Bachelors' programme. That is, Minor discipline programme should be completed by the end of final year B. Tech. program along with the major discipline. i. The Concerned Principal of the college will arrange separate course/class work and time table of the various Minor programmes. Attendance regulations for these Minor discipline programmes will be as per regular courses. j. Reservations shall be followed as per state government of Andhra Pradesh i.e., State-wide Universities Presidential Order 371 Article D in consonance to Section 95 of the A.P. Reorganization Act, 2014 for admissions to Minor discipline programmes. k. A Student registered for Minor in a discipline and pass in all subjects that constitute the requirement for the Minor discipline programme. No class/division (i.e., second class, fist class and distinction etc.) shall be awarded for Minor discipline programme. - 1. This Minor in a discipline will be mentioned in the degree certificate as Bachelor of Technology in XXX with Minor in YYY. For example, Bachelor of Technology in Computer Science & Engineering with Minor in Electronics & Communication Engineering. The fact will also be reflected in the transcripts, along with the list of courses and a project taken for Minor programme with CGPA mentioned separately. - 5.13. A mini project on Water Resource Engineering is introduced for 2 credits in the B. Tech Civil Engineering curriculum. It is introduced at the end of III Year II semester i.e., during summer vacation for at least 15 days period on topics of Water Resource Engineering. Topics can be found in the Civil Engineering curriculum. This shall be evaluated at the beginning of IV Year by a committee consisting of Head of Civil Engineering Department along with two senior faculty members of the department. - 5.14. There shall be a Technical Seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his/her understanding about the topic and submit to the department before presentation. The report and the presentation shall be evaluated by the departmental committee consisting of Head of the Department, seminar supervisor and a senior faculty member. The seminar shall be evaluated for 50 marks. A student shall acquire 2 credits assigned to the seminar when he/she secures 40% or more marks for the total of 50 marks. In case, if a student fails in seminar he/she shall reappear as and Page 5 Principal #### **FIRSTUNIT** #### **QUESTIONSSTART** IllustrateScalable computing over the Internet in brief. ### **NEXTQUESTION** Write about Multi-core CPUs and Multithreading Technologies. #### **NEXTQUESTION** i)Explain about Virtual Machines and Virtualization Middleware. ii)Describe in brief about Data Center Virtualization for Cloud Computing. #### **NEXTQUESTION** Discuss Service Oriented Architecture (SOA) in detail. #### **NEXTQUESTION** Explain about Grid architecture and Standards. #### **NEXTQUESTION** a)Summarize about GPU Computing to Exascale and Beyond. b)Discuss Cloud Computing Over Internet in brief **ENDOFQUESTIONS** **SECONDUNIT** **QUESTIONSSTART** Explain in detail about Open Grid Service Architecture (OGSA). **NEXTQUESTION** Describe the following in brief: a) Motivations of OGSA b)Security Model of OGSA **NEXTQUESTION** Rephrase OGSA services in detail. #### **NEXTQUESTION** Summarize the Functionality Requirements of OGSA. **NEXTQUESTION** Elaborate about the Practical View of OGSA/OGSI B.K Ray #### **NEXTQUESTION** a)Illustrate Data Intensive Grid Service Models in brief. b)Detailed View of OGSA/OGSI in brief # **ENDOFQUESTIONS** **COMMONFIRSTSECOND** **QUESTIONSSTART** a) Define Distributed Computing with examples. b) Differentiate between distributed and parallel computing. c) Enlist the OGSA grid service interfaces. - d) Discuss PaaS? - e) Define Peer-to-Peer Network? #### **NEXTQUESTION** a) List and write computing paradigm distinctions. - b) List and explain about different types of degree of parallelism. - c) Differentiate between Grid and Cloud computing. d) Write about Data Replication. e) Discuss OGSA Frame Work in brief? #### **NEXTQUESTION** - a) Outline about Clusters of Cooperative computers. - b) List System Models for Distributed Computing? - c) Explain in short about computational grid, data grid - d) List the basic functionality requirements of grid service. - e) What are the security requirements of grid service? #### **NEXTQUESTION** a) Explain Cluster Computing? b) List and outline about the layers in Grid Architecture. c) Write a note on Cloud Computing? d) List the System Properties Requirements of OGSA. e) Discuss IaaS? **ENDOFQUESTIONS** B.K hay 13. Expand GPU ______. 14. ____ layer of Grid Architectureis responsible for providing shareable resources like network bandwidth, CPU time, memories scientific instruments etc., [D] A.Connectivity Layer B.Resource Layer C.Collective Layer D.Fabric Layer layer of Grid Architectureis responsiblefor all global resource management and interaction with collections of resources. [C] A. Connectivity Layer B. Resource Layer C. Collective Layer D. Fabric Layer | 1 | protocols for easy an A. Connectivity Lay | d secure access to gr | rid resources by | users. Collective Layer D. | [A] | |----|--
--|--|---|--| | 1 | 7. This layer publication, discover resources. [B | y, negotiation, allocation | reis responsible
ation, reservation | e for providing protoc
on, monitoring and co | ols for resource
ntrol of compute | | | A. Connectivity Lay | B. Resource | Layer C. | Collective Layer D. | Fabric Layer | | 1 | 8. Expand WSDL | | | | | | 1 | 9 is a computers communic achieve a common go A. Network System | cate and coordinate to
oal. | heir actions by | message passing tech | ted at networked
niques in order to
ted system [D] | | 2 | and the second s | | | | | | 2 | o is applied clouds. | ed to building grids, | clouds, grids of | clouds, clouds of gri | ds and clouds of [A] | | | A.SOA | B.SOAP | C.GPA | D.REST. | [] | | 2 | Examples of SOA are Network | e | | | [B] | | | a) Network | B. Web Services | C.Et | hernet | D. B&C. | | 2 | 2. In SOA, the system is
a) Decomposed | B. Integrate | a collection of
d C. C | n/w connected compo
lustered D. Distribu | onents [A] | | 23 | The web service is in a) Cluster Computin | dependent of the uno | derlying
mputing C. H | mechanism. (yper Text D.T | [D] | | 24 | A. Simple Object Acc
C. Service Object Acc | cess Protocol D. S | imple Operatin | g Architecture Protoc | | | 25 | S. SOAP can be used in A. Message | | variety of
C. Network | protocols. | [C] | | 26 | Give an example of c | The state of s | | 15 . 5 | [C] | | | A.Skype | B. Bit-Torrent | C. Google S | earch Engine D. (| China Grid | | 27 | A.Microsoft Azure | 2p network based ap
B. Bit-Torre | The same of sa | oogle Search Engine | [B]
D. China Grid | | 28 | A.Google App Engine | | nt C. G | oogle Search Engine | [C]
D. Skype | | | . SAN stands for | | | | | | 31 | | a pool of virtualized | l computer reso | ources which can be a | ccessed by uses by | | | Internet or intranet. A.Grid B. Clus | | | | [C] | | | | | | | | B. 1c hay ### UNIT-II | 1. | OGSA and OGSI st
A.Globus foundatio | andards were | develope | | | | | [] | В] | |------|--|--------------------------|-------------|----------------------------|--------------|--------------------------------|--------------|------|---------------------| | | C. Open Grid found | | | B. Global (
D. 0 | | dard forum | | | | | 2. | The OGSA defines | the | and | betw | een differer | nt components | of Grid. | [A | 1 | | | A.Interactions and I
C.Availability and I | nteroperabilit | У | B.Ir | nteractions | and Capability | 67 | | - 5 | | • | 5- Marana and Charles (1985) | | | 9 0 | | nd Interoperab | ility | | | | 3. | A. Security and Ava | are th | e primar | y requiremen
B Function | ts of OGSA | A.[B] | amant | | | | | C.Availability and F | Reliability | | D.Ayailabi | lity and Res | source manage | ment | | | | 4. | OGSA functional R | equirements r | nodel has | 3 | no. of parts | | [D] | | | | | A.Three | B.Two | C.Five | e | D.Four | | 1 | | | | 5. | Which of the follow | ing is not a O | GSA ser | | | | | [| C] | | | A.Infrastructure Ser
C.Externalization se | | | | | ement Services | | | | | 6. | GGF stands for (Gl | | ,,m) | | esource Ma | anagement Ser | vices | | | | | The following mode | | | | use of poor | nerformance | and unre | lial | .:1:4 | | 0000 | A.Hierarchical Mod | el | ne for im | B. Federation | on/Mesh m | odel | | | эшцу.
D] | | | C. Hybrid Model | | | D. Monadio | c Model | | | | | | 8. | In which model, the A.Hierarchical Model | data sources | are distril | D. Fadanti | hically acro | ss the network | like tree | | | | | C. Hybrid Model | CI | | B. Federation D. Monadion | | odel | 1 | | A] | | 9. | Which of the below | model data a | ccess is c | | | by the owner | of that d | ata | | | | although its shared a | mong multipl | le clients. | | | o, mo o mer | or that th | | | | | A.Hierarchical Model C. Hybrid Model | el | | B. Federation D. Monadion | | | [| 1 | D] | | 10. | The | | mbination | | | mesh model w | ith the h | est | | | | features of both in ar | n efficient ma | nner. | | | | rui tiic o | CSC | | | | A.Hierarchical Model C. Hybrid Model | el | | B. Federation D. Monadion | | odel | 1 | (| C] | | 11. | Which of the following | ing is not a Sy | stem Pro | | | | 7 | _ i | D 1 | | | A. Fault tolerance | | | saster recover | | | ı | , | D] | |] | B. Legacy application | n managemer | nt D.D | iscovery an | d brokeri | ng. | | | | | 12. | The is use | d in registerir | ng service | es on grid | | | , | | C J | | | A.OGSA | B.OGSI | | | D.None | of the given. | [| ` | c] | | 13. | The combination of | & | | are used to l | | | instance | ov | er the | | | grid infrastructure. | | | | | | [| B | 1 | | | A. OGSA, OGSI | B. G8H, | GSR | C. OGSA, C | iSH | D. GSR | , OGSI. | | | | 14. | All the services prov | ided by OGS | A are cat | egorized into | n | nain services. | 1 | D] | | | | | | | C.Two D. S | | | | | | | 15. | A web service is a so
A. URL | oftware system
B. JAX | | | |) DM | [4 | A] | | | | | | | C. XML | | D. RMI | | | | | 16. | OGSA hosting enviro | onment is for | how to d | efine the | | | [| D | 1 | | I | A. Protocols | B. Transport | ation | C. Congestio | on I | Grid Service | 1 | | | Principal Principal PARVATHAREDDY BABUL R | A. SO | AP | B. OGSI | one of the | C. SOA | basic services. | D. None | В | 1 | |----------------------|--|---------------------------------------|--|---|--
--|------------------|----| | 18. OGSA
A. Cor | A define resounmunication | rce models and
B. Interopera | profiles w | rith
C. Interacting | solution
D. Clusteri | ng [| В | 1 | | A. O | GSI andTomo | | C | . Globus Too | ogies:
lkit and Web Serv
s and Azure Cloud | ices | C |] | | others | • | | | t distinguishes | s a specific grid se | | ce fi | | | 21. Which | of the follo | wing represen | ts a netwo | ork-wide poir | nter to a specific eations. | grid service | in
C | | | A. Sec | menting
cure conversat | | B. Single | logon, Acces | ions or stop viruses | | ding
D | | | A. Se | SA Security N
rvice or end-p
vacy protection | oint policy, res | ecurity poli
ource map | ping rules C. | ent level, we will a
Authorized access
All the above | of critical re | esou
D | | | A. Basi | c Requiremen | its | B. Systen | n Property Re | n of the following:
quirement
ent Requirement | 1 | D | 1 | | A. Dis | aster recovery | , load redistribu
B. Sel
D. Leg | f-healing c | apabilities | es is referred as
ment | [| C | l | | A. Disas | ficant manual
l as
ster recovery
nistration | effort should no | B. Self-he | red to monitor
ealing capabil
ment-based in | ities | the second secon | В | l | | 27. Auth
A. Basi | | ts | cryption be
B. Systen | elongs to which
Property Re | ch of the following | | C | 1 | | A. Unif | e data is scatte
ied Name Spa
Access Mode | ce | in multiple
B. Replica
D. Reliab | ation | as is termed as | [| В | 1 | | 29 | trans | fer opens multipeously. | ple data str | eams for pass | ing subdivided seg | ments of a fi | le | | | A. stripe
C. Mult | ed data
iple Data | | allel data
gle Data | | |] | В |] | | 30.In which is place | ch of the follo | wing, a data ob | ject is parti | itioned into a | number of sections | , and each se | ectio | on | | A. stripe | ed data transfe
lel data transf | er | B. Manua | l Data Transfe
onal Data Tra | |] | A |] | | | | | | | 11 | | | | (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) KAVALI - 524201, S.P.S.R Nellore Dist., A.P. India. Ph: 08626-243930 # DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING #### DIGITAL SYSTEM DESIGN | Q.No | Question | CO
No | K level | М | |------|--|----------|---------|----| | | UNIT-I | 1,500 | | | | 1.a | Construct the basic CMOS inverter circuit and explain its operation with characteristic curve. | 1 | K3 | 5 | | 1.b | Construct the 2- input CMOS NAND/NOR gate circuit and explain its operation with function table. | 1 | K3 | 5 | | 2.a | Construct CMOS OR-AND-INVERT/AND-OR-INVERT gate and explain its operation with function table. | 1 | K3 | 7 | | 2.b | Construct the TTL open collector circuit. | 1 | К3 | 3 | | 3.a | Explain the operation of CMOS three state buffer. | 1 | K3 | 5 | | 3.b | Construct the 2-input ECL10K NOR gate circuit and function table. | 1 | K3 | 5 | | 4.a | Explain the interfacing of low voltage CMOS logic with TTL logic family, with suitable diagrams. | 1 | K3 | 7 | | 4.b | Construct two input TTL NOR gate. | 1 | K3 | 3 | | 5.a | Construct a two input TTL NAND gate and explain the operation with the help of function table. | I | К3 | 5 | | 5.b | Illustrate the CMOS, TTL and ECL logic families with reference to logic levels, DC noise margin, Propagation delay and fan out. | 1 | К3 | 5 | | 6 | Explain the principle of a Emitter-Coupled Logic (ECL/CML) through Basic ECL inverter/buffer circuit with input HIGH and LOW and What are the advantages and disadvantages of ECL? | 1 | K3 | 10 | | | UNIT – II | | | | | 1.a | Explain the VHDL program file structure and also explain the same with the syntax of a VHDL Entity declaration and Architecture definition. | 2 | К3 | 5 | | 1.b | Explain the difference in program structure of VHDL and any other procedural language and give an example. | 2 | K3 | 5 | | 2.a | Explain the Design Flow of VHDL. | 2 | K3 | 5 | | 2.b | Write the syntax of a VHDL function definition and write a VHDL function for converting STD_LOGIC_VECTOR to INTEGER. | 2 | K3 | 5 | | 3.a | Explain the use of packages. Give the syntax and structure of package in VHDL and explain with an example. | 2 | K3 | 5 | | 3.b | Write the syntax and structure of procedures in VHDL and explain with an example. | 2 | K3 | 5 | | 4 a | Write the syntax of a VHDL component declaration and by making use of component declaration develop VHDL program for a prime-number detector. | 2 | K3 | 5 | (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) # DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING | 4.b | Write the syntax of a VHDL process statement and develop a process-based dataflow VHDL architecture for the prime-number detector. (OR) | 2 | K3 | 5 | |--------|--|---|-----|----| | 207501 | Develop VHDL program for the prime-number detector of 4-bit input using behavioural modelling and explain the flow using logic circuit. | 2 | K) | 5 | | 5 | Explain data flow design elements of VHDL and develop VHDL program for 4 input prime number detector. | 2 | K3 | 10 | | 6 | Explain with example the syntax and function of the following VHDL statements: I) IF, ELSE and ELSE IF statements. II) CASE statement. III) LOOP statement. | 2 | K3 | 10 | | | UNIT-III | | | | | l.a | Explain the logic symbol, truth table, logic diagram of a commercially available MSI 74x138 3-to-8 binary decoder and model the same using data flow-style VHDL program. | 3 | K5 | 5 | | 1.b | Design 4 to 16 decoder by Using two 74x138 decoder ICs. | 3 | K5 | 5 | | 2.a | Design a 10 to 4 Encoder with inputs 1 out of 10 code and output's in BCD and Develop the dataflow style VHDL program. | 3 | K5 | 5 | | 2.b | Explain 74x148 priority encoder with its truth table and Develop a vhdl program. | 3 | K5 | 5 | | 3.a | Design a Full Adder/ Full Subtractor using logic gates and Develop VHDL data flow program for the implementation of the above functions. | 3 | K5 | 5 | | 3.b | Explain three state devices. | | K5 | 5 | | 4.a | Explain the logic symbol for 74x151 multiplexer and develop VHDL program. | 3 | K5 | 5 | | 4.b | Explain the logic symbol, truth table of a commercially available MSI 74x157 2-input, 4-bit multiplexer and model the same using behavioral-style VHDL program. | 3 | K5 | 5 | | | UNIT-IV | | | | | 1.a | Explain IC 74X 163 with the help of functional table in free running mode and Develop VHDL program for a 74x163 like 4-bit binary counter. | 4 | K5 | 5 | | 1.b | Design Decade counter using IC 74 X 163. | 4 | K.5 | 5 | | 2.a | Explain about $74x194$ 4-bit universal shift register and develop a VHDL module for the same . | 4 | K5 | 5 | | 2.b | Design a self correcting 4-bit, Johnson counter using 74 X 194. | 4 | K5 | 5 | | 3.a | Design 3 bit LFSR counter using IC 74X194. | 4 | K5 | 5 | | 3.b | Design and explain Excess 3 counter. | 4 | K5 | 5 | | 4.a | Design a self correcting 4-bit 4 state ring counter with single circulating '0' using IC 74194 | 4 | K5 | 5 | | | | | | | Principal (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) KAVALI - 524201, S.P.S.R Nellore Dist., A.P. India. Ph: 08626-243930 #### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING #### UNIT-V | 1 | Construct a 16-bit barrel shifter using 74x151 that performs right circular shift operation. Demonstrate the circuit using VHDL program. | 5 | КЗ | 10 | |-----
---|---|----|----| | 2 | Construct the logic circuit and develop VHDL code for a floating point encoder. | 5 | K3 | 10 | | 3.a | Develop the internal structure, functional operation and timing of edge-triggered commercially available SSI 74x74 D flip-flop and model the same using behavioral styleVHDL program with preset and clear. | 5 | K3 | 5 | | 3.b | Develop a logic circuit to convert a D flip-flop to J-K flip-flop? Write data-flow style VHDL program. | 5 | K3 | 5 | | 4.a | Develop a 8-bit serial-in and parallel-out shift register with flip-flops. Explain the operation with the help of timing waveforms. | 5 | K3 | 5 | | 4.b | Develop the logic diagram of 74x175 IC and write VHDL code for it . | 5 | K3 | 5 | | 5.a | Explain PLD structures . And also give MSI PLD's. | 5 | К3 | 5 | | 5.b | Construct a PLA structure to implement functions F1= $\sum (0,1,3,5)$ and F2= $\sum (3,5,7)$. | 5 | K3 | 5 | #### COMMON QUESTIONS FOR 1 & II UNITS - Which is the fastest logic family? And why? 1.a - 1.b Explain a schottky transistor. - Write about the unused inputs. 1.c - Illustrate the features of VHDL. 1.d - Explain the difference between concurrent statements and sequential 1.e statements. - 2.a Examine the logic family by operation? - Explain the necessity of separate interfacing circuit to connect CMOS gate to 2.b TTL gate? - Explain briefly about i) fan in ii) fan out. 2.c - 2.d Explain about generate and generic. - 2.e Explain the importance of time domain in VHDL. Develop the transition times for CMOS circuits with - (i) Ideal case of zero time switching 3.a - (ii) a more realistic approximation - (iii) Actual timing ,showing rise and fall times - Explain the noise margin? Find out the noise margin from actual 3.b characteristics of the inverter - Explain the levels and noise margin for 74LS logic family. 3.c - 3.d Explain the use of library and use clauses with example. - Explain briefly about Data Types. 3.e (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) # DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IV B.TECH - I SEM MICROWAVE ENGINEERING AY 2019 -20 ### MID EXAM QUESTION BANK | Q.No | | COs | K.Ls | Marks | |------------|---|-----------------|------|-------| | 1 (a) | UNIT I &II Short Answer Questions | | | | | | List the advantages of Microwaves. | COI | K1 | 2 | | (b) | State the relation between Q factor and Coupling Coefficients. | CO1 | K2 | 2 | | (c)
(d) | Define Phase Velocity. | COI | K1 | 2 | | (e) | What is Faraday's rotation? | CO2 | K1 | 2 | | (0) | Draw the structure and field lines of microstrip line | CO ₂ | K2 | 2 | | 2 (a) | What is the dominant modes in Rectangular Waveguide? | COI | K1 | 2 | | (b) | Why TEM waves are not propagated through the waveguide? | COI | K2 | 2 | | (c) | What is the coupling factor of directional coupler? | CO2 | | 2 | | (d) | What is Tee junction? Give examples. | CO2 | K1 | | | (e) | Draw a 4 - port Circulator. | CO2 | | 2 2 | | 3 (a) | For a frequency of 6 GHz and plane separation of 3 cm, find the group velocity for dominant mode in a rectangular wave guide. | CO1 | K2 | 2 | | (b) | If the broader dimension of a rectangular waveguide is 2.2 cm. What is the cut off frequency and wavelength for dominant mode? | CO1 | K2 | 2 | | (c) | Differentiate waveguide and resonator. | CO1 | V2 | | | (d) | State Faradays rotation in non reciprocal devices. | | K2 | 2 | | (e) | Why H plane T junction called as current junction? | CO2 | K1 | 2 | | (-) | r junction cancer as current junction? | CO2 | K2 | 2 | | 4 (a) | Define Group velocity. | COI | K1 | 2 | | (b) | Define degenerated modes in Rectangular Waveguide. | COI | K1 | 2 | | (c) | For a cavity of dimensions 3cmx2cmx7cm filled with air and made of copper. Find the resonant frequency. | CO1 | K2 | 2 | | (d) | What is the need of matching networks. | CO2 | K2 | 2 | | (e) | Mention the purpose of Isolator. | CO2 | K1 | 2 | | | UNIT - I: Essay Answer Questions | 002 | KI | 2 | | 1 (a) | Derive the wave equations for a TM wave and obtain all field components in a rectangular waveguide. | | K4 | 4+3 | | (b) | A rectangular wave guide with dimension of 3x2 cm operates in the TM ₁₁ mode at 10 GHz. Determine the characteristic wave impedance. | COI | К3 | 3 | | 2 (a) | Explain how the Microwave spectrum is categorized into different bands. | COI | K3 | 4 | | (b) | What is the need of Microwave frequency? | CO1 | K2 | 2 | | (c) | Explain different applications of Microwaves? | COI | K3 | 4 | | 3 (a) | Elucidate in detail about Q factor of a cavity resonator with equivalent circuit. | COI | K4 | 7 | | (b) | A rectangular waveguide has dimensions a=4cm, b=3cm, and | COI | K4 | 3 | Principal (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) KAVALI - 524201, S.P.S.R Nellore Dist., A.P. India. Ph: 08626-243930 # DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING | 4. | Explain the following terms with respect to micro strip line | | | | |-------|---|-----------------|------|-------| | (a) | Effective dielectric constant | COI | КЗ | 4 | | (b) | Characteristics impedance | COI | КЗ | 3 | | (c) | Quality factor | COL | K3 | 3 | | 5 | Determine the expression for fields in TE and TM mode | COL | K4 | 10 | | 6 (a) | Derive the relations among λ_0 , λ_g , λ_c in a wave guide. | | K4 | 6 | | (b) | Explain the concept of attenuation in wave guides. | | K3 | 4 | | | UNIT - II: Essay Answer Questions | | IL. | 4 | | 1. | Explain the operation of E plane Tee and H plane Tee and write | CO2 | КЗ | 8+2 | | | the properties of E plane Tee and H plane Tees. | 002 | KS | 0.72 | | 2. | What is a magic Tee junction. Explain its operation. Give its | CO2 | КЗ | 2+6+2 | | | applications. | 002 | KS | 2+0+2 | | 3. | What is discontinuity in a wave guide? Explain different types | CO2 | КЗ | 2+8 | | | of windows and their equivalent circuits. | CO2 | KS | 2+8 | | 4. | Explain the principle of operation of an isolator. What is the | CO2 | КЗ | 8+2 | | | significance of using isolator in microwave circuits. | 002 | KS | 8+2 | | 5. | What is meant by microwave attenuator? Explain the | CO2 | КЗ | 2.0 | | | functioning of flap and vane attenuators. | CO2 | KS | 2+8 | | 6. | What is phase shifter? Describe its principle of operation with | CO2 | K3 | 21612 | | | neat sketch. Give its applications. | CO2 | KS | 2+6+2 | | | UNIT III, IV & V Short Answer Questions | | | | | 1 (a) | Outline the advantages of TWT | CO3 | 1/1 | 2 | | (b) | If the input power P _i = 30W and output power P ₀ =10W. | CO5 | K1 | 2 2 | | (-) | Calculate the attenuation in dB. | COS | K2 | 2 | | (c) | Name some Avalanche transit time devices. | COA | 774 | | | (d) | Define Hull cut off. | CO4 | K1 | 2 2 | | (e) | What are the different blocks that frame the microwave test | CO4 | K1 | 2 | | (4) | bench? | CO ₅ | K2 | 2 | | | | | | | | 2 (a) | List the applications of reflex klystron. | CO3 | K1 | 2 | | (b) | How does the convection current can be expressed in TWT? | CO3 | K2 | 2 | | (c) | What is frequency pulling and frequency pushing in | CO4 | K2 | 2 2 2 | | | magnetrons? | 004 | K2 | - | | (d) | Mention the applications of magic Tee. | CO5 | K1 | 2 | | (e) | State any three properties of S matrix. | CO5 | K2 | 2 | | | * · · · · · · · · · · · · · · · · · · · | COS | 11.2 | - | | 3 (a) | Name the materials used in Gunn Diode. | CO4 | K1 | 2 | | (b) | What is meant by strapping? | CO3 | K1 | 2 | | (c) | Write the S matrix for Isolator. | CO5 | K2 | 2 2 | | (d) | Difference between baretter and thermistor. | CO5 | K2 | 2 | | (e) | What is the main purpose of slotted section with line carriage? | CO5 | K2 | 2 | | | UNIT - III: Essay Answer Questions | COS | K2 | - | | 1. | Describe the necessary theory and working of two cavity | CO3 | K3 | 10 | | | klystron amplifier with Applegate diagram. | 003 | KS | 10 | | 2. | Derive the expressions for propagation constants in TWT and | CO3 | K4 | 10 | | | explain. | 203 | 17.4 | 10 | | 3. | Derive the expression for efficiency of Reflex klystron. | CO3 | K4 | 10 | | 4. | Describe the limitations of conventional tubes at microwave | CO3 | K3 | 10 | | | e . | 000 | 14.5 | 10 | Principal (Affiliated to J.N.T.U.A, Approved by AICTE and Accredited by NAAC with 'A' Grade) KAVALI - 524201, S.P.S.R Nellore Dist., A.P. India. Ph: 08626-243930 #### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING | UNIT IV F A O | | | | |--
---|--|---| | Explain how the oscillations are sustained in cavity magnetron with suitable sketches assuming that π – mode oscillations | CO4 | К3 | 8 | | | 001 | | 2 | | | | 1 | 2 | | electron device with two valley model, Also draw the structure, equivalent circuit and V-I characteristics of Gunn diode. | CO4 | K3 | 7 | | The drift velocity of electron is $3x10^7$ cm/s through the active region of length $15\mu m$. Calculate the natural frequency of the Gunn diode and the critical voltage | CO4 | КЗ | 3 | | | CO ₄ | КЗ | 2+3 | | Derive the manley –Rowe power relations and Explain how those are useful in the prediction of power gain possibility in a parametric amplifier and state its applications. | CO4 | K4 | 5 | | Derive the expressions for power output and efficiency of TRAPATT diode. Mention its applications and performance characteristics. | CO4 | K4 | 6 | | Explain the construction and equivalent circuit details of VARACTOR diode. | CO4 | К3 | 4 | | | | 2221 | | | Discuss in detail the power measurement using microwave devices. | CO5 | КЗ | 10 | | With the help of block diagram, explain the steps involved for
the insertion loss and power ratio method of attenuation
measurement. | CO5 | КЗ | 5 | | Give the measurement procedure for Q factor of a resonant cavity and attenuation constant at microwave frequencies. | CO5 | K3 | 5 | | Draw the block Schematic of a typical microwave bench and | CO5 | K3 | 5 | | Explain the method to measure VSWR and reflection co-
efficient. | CO5 | К3 | 5 | | Derive Scattering matrix of Shunt Tee using S parameter theory. | CO5 | K4 | 5 | | Why S Parameters are used at microwave frequencies explain. Give the properties of S parameters and derive S matrix for series Tee using the Properties of S parameters. | CO5 | K4 | 5 | | | with suitable sketches assuming that π – mode oscillations already exist. Explain how the same effect is obtained without strapping Discuss the working principle of Gunn diode as transferred electron device with two valley model, Also draw the structure, equivalent circuit and V-I characteristics of Gunn diode. The drift velocity of electron is 3x10 ⁷ cm/s through the active region of length 15μm. Calculate the natural frequency of the Gunn diode and the critical voltage What is IMPATT diode? Explain the principle of operation. Derive the manley –Rowe power relations and Explain how those are useful in the prediction of power gain possibility in a parametric amplifier and state its applications. Derive the expressions for power output and efficiency of TRAPATT diode. Mention its applications and performance characteristics. Explain the construction and equivalent circuit details of VARACTOR diode. UNIT - V: Essay Answer Questions Discuss in detail the power measurement using microwave devices. With the help of block diagram, explain the steps involved for the insertion loss and power ratio method of attenuation measurement. Give the measurement procedure for Q factor of a resonant cavity and attenuation constant at microwave frequencies. Draw the block Schematic of a typical microwave bench and explain the functionality of each component. Explain the method to measure VSWR and reflection coefficient. Derive Scattering matrix of Shunt Tee using S parameter theory. Why S Parameters are used at microwave frequencies explain. Give the properties of S parameters and derive S matrix for | Explain how the oscillations are sustained in cavity magnetron with suitable sketches assuming that $\pi-$ mode oscillations already exist. Explain how the same effect is obtained without strapping Discuss the working principle of Gunn diode as transferred electron device with two valley model, Also draw the structure, equivalent circuit and V-I characteristics of Gunn diode. The drift velocity of electron is 3×10^7 cm/s through the active region of length $15\mu m$. Calculate the natural frequency of the Gunn diode and the critical voltage What is IMPATT diode? Explain the principle of operation. Derive the manley –Rowe power relations and Explain how those are useful in the prediction of power gain possibility in a parametric amplifier and state its applications. Derive the expressions for power output and efficiency of TRAPATT diode. Mention its applications and performance characteristics. Explain the construction and equivalent circuit details of VARACTOR diode. UNIT - V: Essay Answer Questions Discuss in detail the power measurement using microwave devices. With the help of block diagram, explain the steps involved for the insertion loss and power ratio method of attenuation measurement. Give the measurement procedure for Q factor of a resonant cavity and attenuation constant at microwave frequencies. Draw the block Schematic of a typical microwave bench and explain the functionality of each component. Explain the method to measure VSWR and reflection coefficient. Derive Scattering matrix of Shunt Tee using S parameter theory. Why S Parameters are used at microwave
frequencies explain. Give the properties of S parameters and derive S matrix for | Explain how the oscillations are sustained in cavity magnetron with suitable sketches assuming that π – mode oscillations already exist. Explain how the same effect is obtained without strapping Discuss the working principle of Gunn diode as transferred electron device with two valley model, Also draw the structure, equivalent circuit and V-1 characteristics of Gunn diode. The drift velocity of electron is $3x10^7$ cm/s through the active region of length 15μ m. Calculate the natural frequency of the Gunn diode and the critical voltage What is IMPATT diode? Explain the principle of operation. Derive the manley –Rowe power relations and Explain how those are useful in the prediction of power gain possibility in a parametric amplifier and state its applications. Derive the expressions for power output and efficiency of TRAPATT diode. Mention its applications and performance characteristics. Explain the construction and equivalent circuit details of VARACTOR diode. UNIT - V: Essay Answer Questions Discuss in detail the power measurement using microwave devices. With the help of block diagram, explain the steps involved for the insertion loss and power ratio method of attenuation measurement. Give the measurement procedure for Q factor of a resonant cavity and attenuation constant at microwave frequencies. Draw the block Schematic of a typical microwave bench and explain the functionality of each component. Explain the method to measure VSWR and reflection coefficient. Derive Scattering matrix of Shunt Tee using S parameter CO5 K4 CO5 K4 Give the properties of S parameters and derive S matrix for | MID EXAM - 1 BRANCH: ECE SUBJECT: Electrical Technology DATE: 09/09/2019 (FN) MAX. MARKS: 30 ANSWER THE FOLLOWING QUESTION - 1. (a) What is the role of commutator in dc generator. - (b) Define flemings right hand rule. - (c) Name any two applications of a dc motor. - (d) Define critical field resistance of a dc shunt generator. - (e) Derive torque equation of dc motor ### ANSWER ANY ONE OF THE FOLLOWING QUESTIONS 2. Explains about Self Excited & Separately Excited Generators. CO1, K3 OR 3. Explain with neat sketches, different types of dc generators based on excitation. CO1, K3 # ANSWER ANY ONE OF THE FOLLOWING QUESTIONS - 4. (a) Write down the principle operation of DC motor. CO2, K3 - (b) With neat sketches, explain different types of dc motors. CO2, K3 OR 5. (a) Explain how torque developed in the armature of dc motor. Derive the expression for torque. CO2, K3 (b) A 200v dc shunt motor takes a total current of 100a and runsat750rpm. The resistance of the armature winding and shunt field winding are 0.1Ω and 40Ω . Calculate (i) Torque Developed By The Motor (ii) Shaft Torque And (Iii) Output Power. CO2, K3 Principal #### MID EXAM - 2 ****** BRANCH: ECE SUBJECT: Switching Theory & Logic Design DATE: 13/11/2019 (FN) MAX. MARKS: 30 ********* - a)Draw the logic diagram for full adder. - b) What is a Multiplexer? - c) What is content addressable memory? - d) Explain race around condition - e) What is static I hazard and what is static 0 hazard? ### ANSWER THE FOLLOWING QUESTIONS - a) Design a 8:1 MUX using 4:1 MUX. - b) Design half adder using decoder.CO3, K5 #### OR - Design and implement 3 bit ripple counter using JK flip flop draw the state diagram &logic diagram for the 3. same. CO4, K5 - (a) Estimate the following function F(A,B,C,D)=∑m(0,1,3,4,7,10,14) using CO3, K5 - (i) 16:1 MUX (ii) 8:1 MUX (iii) 4:1 MUX - (b)Design a 2-bit comparator. CO3, K5 #### OR a)Design an FPGA and explain in detail b) Design the logic implementation of a32x4bit &8x4bit ROM using suitable decoder. CO5, K5 Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. MID EXAM - 1 BRANCH: ECE SUBJECT: Probability Theory & Stochastic Processes DATE: 07/09/2019 (FN) MAX. MARKS: 30 ******************* #### ANSWER THE FOLLOWING QUESTION 1. a)Define discrete sample space with example b) Define continuous sample space with example c) Define probability distribution function d) Define probability density function e) Define discrete random variable ANSWER ANY ONE OF THE FOLLOWING QUESTIONS 2(a)Caluculate and Plot distribution function for the random variable given below and state whether it is a discrete or continuous function. The random variable X has the discrete variable in the set {-1,-0.5,0.7,1.5,3}. The corresponding probabilities are assumed to be{0.1,0.2,0.1,0.4,0.2}.Plot its distribution function and state whether it is a discrete or continuous function. CO1, K4 b) For the continuous probability function $f(x) = K x^2 e^{-x}$ when $x \ge 0$ find the value of K. CO1, K4 OR 3.a) Explain the following functions CO1, K4 i) Gaussian distribution iii) Rayleigh distribution ii) Binomial distribution iv) Poisson distribution b) The diameter of a cable' X' is taken to be a random variable with pdf $f(x) = 6x(1-x), 0 \le x \le 1$ CO1, K4 i) Test it is a pdf or not. ii) Determine 'b' such that P(x < b) = P(x > b) # ANSWER ANY ONE OF THE FOLLOWING QUESTIONS Given the function $$f_{x,y}(x, y) = \begin{cases} b(x + y)^2 : -2 < x < 2 \text{and } -3 < y < 3 \\ 0 : \text{elsewhere} \end{cases}$$ - i.) Find the constant b such that this is a valid joint density function. - ii.) Determine the marginal density functions $f_x(x)$ and $f_y(y)$. OR a) Explain about joint distribution function and marginal distribution function. CO2, K3 b) .A Joint probability density function of two random variables x and y is given by $f_{x,y}(x,y)=$ $\frac{5}{16}x^2y$; 0 < y < x < 2 0; elsewhere i.) Find the marginal density functions of x and y. ii.)Are x and y statistically independent? Principal ### MID EXAM - 2 BRANCH: ME | DATE | : | 12/11 | /201 | 6 | (AN | |------|---|-------|------|---|-----| | | SUBJECT: Metrology & N | Measurements | S | | MA | X. MARK | | | | |---------|--|---------------------|---------------|-----------|---------|-------------|-------|---------|--------| | Stuc | dent Name: | | Roll No. | П | 1727 | I I | 13:2 | 20 X 1/ | 72 = 1 | | Sign | nature of Invigilator: | | | | | | _ | Ш. | Ш | | Sign | nature of Evaluator | | | | | Marks: | | / | | | *** | ********** | | | | | | | / 1 | 0 | | | ANSWER ALL THE OUESTIONS, FAC | ***** | ***** | *** | *** | **** | *** | *** | *** | | 1 | ANSWER ALL THE QUESTIONS; EAC | H QUESTI | ON CARR | IES | HALF | MARK | | | | | | . The 'best size wire' for measuring the effective diamete | er of threads i | s of diamet | er [| 1 | | | | | | | (a) poses (c) p sec (d) 2n noc (| | | | 1 | | | | | | 2 | a life all and ment test is also called | | | | | | | | | | 3 | The best size wire for ISO metric thread for measuring Pitch p is | nitch diamet | - C | | | | | | | | | Pitch p is | piten tramete | ers of a scre | w thr | ead in | terms of i | its | | | | 4 | (a) 0.5 p (b) 0.75 p (c) 0.5773 p (d) 0.4227
On triple thread screw | р | | L |] | 40 | | | | | | . On triple tilread screw | | | | r | 1 | | | | | 5. | (a) Lead = pitch (b) lead = 3 pitch (c) lead = 9 pitch (d)
A master gauge is the | lead = 0.5 pi | itch | | L | 1 | | | | | | (a) A new gauge | a |] | 1 | | | | | | | | (c) a standard gauge for checking assured to | (b) an internat | tional refer | ence s | standa | rd | | | | | 6. | The surface roughness on drawing is represented by | most accurat | e gauge | | | | | | | | 7. | (a) Cheles (b) squares (c) zig-zag lines (d) +: | | _ | 1 |] | | | | | | | the temperature indicating incharge and in the incharge and in the incharge and in the incharge and | idicating the | temperaure | of[| 1 | | | | | | 8. | (a) Jacket cooling water (b) engine cylinder (c) engine cylinder (d) wide space of liquid filled systems as it gives | ine piston (d | d) Lubricati | ng oi | 1 | | | | | | | (a) Wide range of temperatures | | | 1 | 1 | |
 | | | | (b) High sensitivity | | | | | | | | | | | (c) Wide temperature range and approximately linear | scale | | | | | | | | | | (d) Both a and b (e) None of the above | | | | | | | | | | 9.1 | LVDT is a which type of following transducers | | | | | | | | | | | a) Capacitive transducer | | | 1 | 1 | | | | | | | \ . | | | | | | | | | | | e) Inductive transducer | i | | | 9 | | | | | | | | | | | | | | | | | 10 | l) Variable resistive transducer | | | | | | | | | | 10. | Pick up the appropriate word for A reading obtained fi
(a) Analog (b) digital (c) display (d) indicator | rom the moti- | on of a: | | | 20 | | | | | 11. | (a) Analog (b) digital (c) display (d) indicator | and motific | on or a pon | iter of | n a sca | ile: | | | | | .500000 | Sphygomanometer is the device used to measure (a) Body temperature (b) blood and all the second sec | | | 1 | 1 | | | | | | 12. | (a) Body temperature (b) blood pressure (c) heart beat Piezo electric crystals produce an emf | (c) sugar lev | els | | 1 | | | | | | | (d) when external mechanical force is and in | ¥1 | |] | 1 | | | | | | | (b) When external magnetic field is applied | | | | | | | | | | | (c) when radiant energy stimulates the annual | | | | | | | | | | 13. | (d) When the junction of two such crystals is heated Decibel is a unit of | | | | | | | | | | | (a) Sound pressure level | | - 1 | ii I | 1 | | | | | | | (b) Quantity in which the rotio - C. | 26 | | | * | | | | | | | (c) Any quantity which is represented by the nature | al algorithm | ea | 2000 mg 1 | | | | | | | | (c) Any quantity which is represented by the natural reference quantity (d) Any quantity which is | a argorithm o | i the meas | ured c | luantit | y with res | pect | to the | | | | (d) Any quantity which is represented as 10 times the reference signal | the algorithm | of the me | Silve | l ave- | elen | | | | | | - Continue signal | 7.4 | and me | abut c(| - quan | uty with re | espec | et to | | 14. To measure radio frequency, the suitable frequency meter is | (a) Weston frequency meter (b) reed vibrator frequency meter (c) Heterodyne frequency meter (d) electrical resonance frequency meter 15. Which of the following additional devices is required to measure pressure with help of Bellows (b) bourdon tube (c) bolometer (d) rotameter | LVDT[] | |---|--------| | 16. Richter magnitude scale is used to measure (a) Wind effect (b) Rainfall measurement (c) Earth Quake (d) Cyclone effect | 1 | | 17. Odometer is the device used for the maesurement of 18. Audio frequency range lies between (a) Between 20 KHz and 30 KHz (b) Between 16 and 20 KHz (c) Around 1000 Hz (d) Above 40 KHz | | | 19. The device used to measure above 1000 ⁰ C is (a) Thermopile (b) Thermometer (c) Thermocouple (d) Pyrometer 20. Which of the following material bases of the control of the following material bases mat | 1 | | 20. Which of the following material has a negative gauge factor, when used as strain gauge [(a) Sliver (b) Nickel (c) silicon (c) tungsten | 1 | B. Principal (a) #### MID EXAM - 2 IENCE O | II B. Tech (I - Sem) BRANCH: FFE | | |--|--| | TO TO SOLUTION | DATE: 12/11/2016 (FN) | | SOBJECT. Data Structu | $MAX. MARKS: 20 \times 1/2 = 10$ | | Student Name: | Roll No. | | Signature of Invigilator: | , | | Signature of Evaluator: | Marks: 10 | | ************************************** | ******* | | ANSWER ALL THE QUESTIONS; EACH | A QUESTION CARRIES HALF MARK | | 1. 1Which of the following is an internal sorting technique? | | | a) Tape Sort b) 2-way Merge Sort c) Merge Sort | d) Chall Car | | The average-case time complexity of quick sort is | d) Shell Sort | | | | | a) O(n) b) O(n ²) c) O(n logn) 3. Selection sort first finds the element in the list and pu | d) O(logn) | | a) Middle element b) Largest element c) Last element 4. The average case time and bit is a factorial for the factorial factori | it it in the first position. | | 4. The average-case time complexity of selection sort is | ement d) Smallest element [] | | | | | a) O(n) b) O(n ²) c) O(n logn) 5. | d) O(logn) | | The worst-case time complexity of quick sort occurs when eler | | | a) linear b) sorted c) set d) none | ments are in sorted order. [] | | 6. The worst-case time complexity of shell sort is | | | a) O(n) b) O(n ^{1.5}) c) O(n ²) | [] | | 7. If K is the key and D is the size of the hash table, then division | d) O(n logn) | | a) k=k/d b)k=k%d c)H(K)=K%D d) none | nash function equations is $H(K) = k \% D$. | | 8. In binary search process, if Key < K[Mid] then reset High = | | | a) Mid - 1 c) Mid + 1 d) n | | | 9. No empty location is available to insert an element into the hash | h table fo language | | chonon dhull | | | Open hashing method used dynamic storage management policy | 6 1 | | a)static storage b)dynamic storage c) bindin | | | 11. If two or more keys tried to access same location of the hash tall | ble are known as a | | a)collision b)repell c)probing | d) attract | | 12. The functional equation used to get an alternative empty location | n with double hashing is | | I I | 1 | | a) $f(i) = I$ b) $f(i) = i^2$ c) $f(i) = i * h^1(key)$ | d) Table extension | | 13. The searching technique that takes O(1) time to find a data item | is | | a) Linear search b) Binary search | a) Hashing to m | | 14. Trees with a worst-case height of O(log n) are called tr | rees I I | | a) binary tree b)skew tree c)height balanced tree d) 15. A binary tree in which if all its levels asserted to the distribution of distri |) none | | 15. A binary tree in which if all its levels except possibly the last, ha and all the nodes at the last level appear as far left as possible known in the last level. | ave the maximum number of nodes | | a) Full binary tree b) AVL tree c) Threaded tree | | | a) Full binary tree | d) Complete binary tree | |
d)hioving b)traversing c)sorting d)searching | own as operation. [] | | 17. Which of the following is an application of graph? | i al- | | a) Recursion b) CPU Scheduling c) Shortest path | d) Towers of Hanoi Dansidal | | IV A Li | u) towers of Hanor Dankillal | 18. A binary tree that contains maximum possible nodes in all levels is known as_ d) Towers of Hanoi Principal trep ARVATHAREDDY BABUL REDDY VISVOBAYA INSTITUTE OF TEGHNOLOGY & SCIENCE VISVOBAYA INSTITUTE OF TEGHNOLOGY & SCIENCE KAVALI-524261, SPSK Nellein Dist, Andhrapradesh. | 100 | a)tree | | | tree d) none | | | |---------|---------------------|---------------------|----------------|-----------------------|----|---| | 19. A f | full binary tree of | f height h contains | exactly | number of nodes. | 1 | 1 | | | a) h | b) 2 ^h | c) $2^{h} - 1$ | d) 2 ^h + 1 | | 1 | | 20. The | nodes which ha | ve same parent a | re called | 179.52 AV.5 | r | 1 | | | a)parent | b)child | c)siblings | d) mot | Į. | 1 | B. / Principal TIME: 90 MIN ******** # P.B.R. VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE MID EXAM - 2 BRANCH: EEE SUBJECT: Data Structures DATE: 12/11/2016 (FN) MAX. MARKS: 30 1. List the operations and applications of graph structures Define the shell sort and write the time complexity of shell sort? Define the merging and write the types of merging? Define the bucket hashing? Analyze average-case time complexity of linear search? #### ANSWER THE FOLLOWING QUESTIONS 2. Explain the different hashing methods? OR - 3. Explain the collision resolution methods? - 4. Explain the operations of binary tree? OR 5. (a).explain the straight insertion sort with example? (b).explain the list insertion sort with example? Principal # P.B.R. VISVODAYA INSTITU #### MID E | TE OF | TECHN | NOLOGY & SCIE | NCE O | |--------|-------|---------------|-------| | XAM -1 | | | | | | | | | | III B. Tech | (II - Sem) | |-------------|------------| | TIME: 20 | | Signature of Evaluator: BRANCH: ME 2020 (FN) x 1/2 = 10 10 | TIME: 20 MIN | SUBJECT: Operations Research | MAX, MARKS : 20 | | | | | | |---------------------------|------------------------------|-----------------|----|-------|--|--|--| | Student Name: | , | Roll No. | | | | | | | Signature of Invigilator: | | | | | | | | | Signature - SE - 1 | | | Ma | arks: | | | | # ANSWER ALL THE QUESTIONS; EACH QUESTION CARRIES HALF MARK | two of table | in a linear pr
them are ≤ t | rogrammi
ype and o | ing prob | lem of maximization type,
type, then how many are | there are three linearly
total number of variable | independent constraints,
les there in the simplex | |--------------|--------------------------------|-----------------------|----------|--|--|--| | 2 5 | a) 6 | b) 5 | c) 7 | d) can not be said | | | 2. For a maximization problem the objective function coefficient for an artificial variable is a) +M b) -M c) zero d) none *************** In two phase method the auxiliary objective function value is non zero, then the problem has ____ solution. 3. a)Unique b) Unbounded c) infeasible d) multiple In a linear programming problem of maximization type, there are three linearly independent constraints, two of them are \leq type and one is = type, Is it possible to find the graphical solution of the problem b) no c) can not be said d) after certain changes a) yes Any basic variable is not containing in basis column and Cj-Zj value for that column is zero, then the problem 5. has multiple optimal solutions. TRUE/FALSE. 6. Study the following simplex table for a maximization problem, | Cj | | | 12 | 15 | 16 | 0 | 10 | 10 | |---------------------------------|----------------|----------|----------------|----|------|-----|----|----------------| | $C_{\mathbf{B}}$ | Basis | solution | X ₁ | X2 | V | 8. | 0 | 0 | | 12 | X_1 | 8 | A | P | C A3 | 1/ | 52 | S ₃ | | 0 | S ₂ | 3 | | 0 | | 1/2 | d | e | | C _j - Z _j | | | 0 | -9 | -20 | - | - | | | it an optimal table? | | | 10 | -9 | -20 | -6 | 0 | 0 | b) no c) can not be said d) needs to be one more-iteration The variable is added to less than are equal to constraint to convert in to equation is called 7. a) slack b) surplus c) artificial d) degenerate Name the three phases in scientific method of operations research? 9. Classify the O.R models based on method of solution? 10. Variables which can assume negative, positive or zero value are called unrestricted variables. # TRUE/ FALSE. The right hand side constant of a constraint in a primal problem appears in the corresponding dual as a) a coefficient in the objective function b) a right hand side constant of a constraint c) an input out coefficient d) none of the above 12. How you can convert maximization assignment model in to minimization problem? 13. In a 6×6 assignment problem, the number of allocated basic cells is b) 31 c) 36 14. For any primal problem and its dual, (a) optimal value of objective functions is same (b) primal will have an optimal solution if and only if dual does too (c) both primal and dual can not be infeasible (d) all of the above When total supply is equal to total demand in a transportation problem, the problem is said to be 15 (a) balanced (b) unbalanced (c) degenerate (d) none of the aboys PARVATHAREDDY BABUL REDDY 16. KAVALI-524201, SPSA Nellete Dist. Andfilapracesh. a) it is complicated to use b) it does not take in to account cost of transportation c) it leads to a degenerate initial solution d) all of the above 17. If the total supplies _____ total demand, then an additional column known as _____ added to the transportation table to absorb the same. 18. Allocation process can't be continued when we get more than one zero in each row and each column. TRUE/FALSE. 19. Principle of complementary slackness states that a) Primal slack × dual main = 0 b) primal main × dual slack 0 c) both (a) and (b) d) none 20. The assignment problem, at the time of applying the Hungarian algorithm must be an unbalanced one. TRUE/FALSE. Deincipal #### P.B.R. VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE MID EXAM - 1 III B.Tech (II - Sem) BRANCH: ME DATE: 02/03/2020 (FN) TIME: 20 MIN SUBJECT: Operations Research MAX. MARKS: $20 \times 1/2 = 10$ Student Name: Roll No. Signature of Invigilator: Marks: Signature of Evaluator: 10 ************************ ANSWER ALL THE QUESTIONS; EACH QUESTION CARRIES HALF MARK 1. Operations research approach is a) multi disciplinary b) scientific c) intulitive d) all of the above In a linear programming problem of maximization type, there are three linearly independent constraints, two of them are ≤ type and one is = type, then how many artificial and slack variables are in the simplex table at any stage a) 2 b) 3 c) 4 d) none of these 3. Study the following simplex table for a maximization problem, C_i 12 15 16 0 C_{B} Basis solution X_1 X_2 Xa Si Sz 12 X_1 8 A 1/2 E 0 S 0 Ci-Zi 0 -9 -20 From the second row of the table if we write $Ax_1+Px_2+Cx_3+(1/2)s_1+ds_2+es_3=8$,, then value of 'A' is a) 1 b) 3 c) 2 d) can not be said 4. Decision variables are 1 b) uncontrollable c) parameters d) none of the above a) controllable 5. Study the following simplex table for a maximization problem, C_{i} 15 16 0 C_B Basis solution X_1 X_2 X3 S_1 Sz 12 X_1 8 A P C 1/2 E 0 S_2 Q 0 -9 -20 -6 From the second row of the table if we write $Ax_1+Px_2+Cx_3+(1/2)s_1+ds_2+es_3=8$,, then value of 'P+C' is c) any negative value d) one positive and other negative [] a) zero Define operations research? . In a linear programming problem of maximization type, there are three linearly independent constraints. two of them are ≥ type and one is = type, then how many are a) slack b) surplus c) artificial d) degenerate In the optimal table artificial variable is present in the basis column, then the problem has _____ solution. 9. a) Unique b) Unbounded c) infeasible d) multiple 10. Study the following simplex table for a maximization problem, C_i 12 15 16 C_B Basis solution X_1 X_2 X3 S_1 Principal 12 X_1 8 A P PARVATHAREDDY BABUL REDDY S_2 3 VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE Q $C_i - Z_i$ KAVALI SZĄŻGI, SPSR Wallore Bist. Anghirapradest 0 -9 -1 The variable is added to equality constraint to avoid mathematical inconvenience is called d) none of these a) 2 8. b) 3 c) 4 the basic variables in the simplex table at any | г | rom the second r | ow of th | e table | if we wr | rite $Ax_1+Px_2+Cx_3+($ | $1/2$) $s_1+ds_2+es_3=$ | 8,, then | value of | f 'P' is | | |-----|----------------------------|------------|-----------|------------------|-------------------------------------|--------------------------|------------|------------|--------------|-------------| | | a) 1 | b): | 3 c): | 2 d) c | an not be determined | | ſ | 1 | | | | 11. | The Hungaria | n metho | d for so | olving an | assignment problem | can also be use | d to solv | ref 1 | | | | | a) a transpor | tation pr | roblem | b) a trav | elling salesman prob | lem c) both (a) | and (b) | d) none | | | | 12. | The initial so | lution o | f a tran | sportation | n problem can be ob | tained by apply | ing any | known | method He | www.ar th | | | only condition | n is that | | | | 1 | | | | | | | a) the soluti | ion be o | ptimal | b) the ri | im conditions are sa | tisfied c) the so | olution r | not be de | egenerate d | all of the | | | above | | | | | -, | ration i | ior oc ac | generate u |) all of th | | 13. | Write the ass | ignment | for the | followin | ng | | | | | | | | | | Total | | | | | | | | | | | 1 | 2 | 3
1
2
3 | | | | | | | | | m/c 2 | 4 | 0 | 1 | | | | | | | | | m/c 2 | 3 | 0 | 2 | | | | | | | | | 3 | 4 | 1 | 3 | | | | | | | | 14. | If the assignm | nent is in | chain | then it g | ives the shortest path
E/FALSE. | n from first node | e 1 to la | st node | 5. | | | 15. | The occurrence | e of dee | reneracy | v while s |
olving a transportation | n problem mee | on these F | 11.0 | | | | | a) total sun | ply equ | als total | demand | b) the solution so o | htained is not fo | is that [| a) 4b = 6- | | | | | negative d) no | one of th | e above | e | b) the solution so t | orallied is not re | asible | c) the re | w allocation | ns become | | 16. | In transporta
TRUE/FALS | ation pr | oblem | all cell | evaluation values | are negative | or zero | , then i | it will be | optimum | | 17. | If there were n | worker | s and n | jobs ther | re would be | | r | 1 | | | | | | | | | c) (n!) ⁿ solutions d) | | 31. | 1 | | | | 18. | The degenera | cv in tra | nsports | tion prob | blem indicates that | n solutions | | ្ | | | | | (a) Dum | my allo | cation r | eeds to b | be added (b) the pro | blom bos no for | | ! | | • | | | solutio | on exist | (d) | (a) and (| b) but not (c) | otem has no fea | sible so | lution | (c) multip | le optimal | | 19. | An assignmen | t proble | m is co | nsidered | as a particular case | of a transportati | on meals | lam b | | | | | | | | | | 1 | | | | | | | a) the number | er of row | s equal | s column | ns b) all x _{ij} =0 or 1 c | all rim conditi | one are | 1 d) all a | Ctha aba | 200 | | 20. | The north wes | st corne | r rula r | rovidac | n manhanism for at | , an run conditi | ous are | 1 u) an c | i the above | | | | problem. | st corne | i ruie p | novides | a mechanism for ob | taining an | | solution | to the tran | sportation | | | | | | | | | | | | | 1. B.I Ay Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. | 30 10 30 | 100 | | M | ID EXAM - 1 | | | | | | |--|---|---|--|---|----------------------------------|--|--|-------------------------------------|--| | III B.Tech (II - Sem) | | | BRAN | CH: ME | | | DATE | . 02/02/2020 /7 | | | | | | JECT: Operations Research | | | | DATE : 02/03/2020 (FN
MAX. MARKS : 20 x 1/2 = 1 | | | | tudent Name: | | | | | l No. | MAX. MAK | K3 . 20 X 1/2 = | | | | gnature | | | | | | | | | | | ignature of Invigilator: | | | | | | | Marks: | / | | | ignature of Evaluator:
************ | | | **** | ***** | ste ate ate ate at a | | | / 10 | | | | ANSWE | R ALL THE Q | UESTION | S: EACH OU | *****
ESTION (| CADDIES II | ALE MADE | ***** | | | 1. | | | | | | | | | | | In the key column all the element | | | nts are neg | ative or zero th | en the prot | blem has | solution. | | | | | a)Unique | b) Unbounded | c) infeasib | le d) multipl | e | | | | | | 2. | In the ratio colu | mn two elemen | ts are mini | mum and equal | then the pr | roblem is said | I to be | solution. | | | 3. | a) Unique | o) degenerate | c) inteasib | le d) multiple | P | | | | | | | of them are < tv | programming p | type then | naximization ty | pe, there a | re three linea | rly independe | ent constraints | | | any s | of them are ≤ ty
stage [| | type, then | now many | are non | basic variable | es are in the | simplex table a | | | 2000 | a) 5 | b) 3 c) 4 | d) can not | t be said | | | | | | | 4. Class | sify the O.R mod | els based on tin | ne reference | e? | | | | | | | 5. | Classify the O. | R models based | on structur | e? | | | | | | | | y the following s | implex table for | a maximiz | ration problem | | | | | | | 6. Stud | | | | atton problem, | | | | | | | Cj | | | 12 | 15 | 16 | 0 | 0 | 0 | | | C _j | Basis | solution | 12
X ₁ | | | 0
S ₁ | 0
S ₂ | | | | C _j
C _B
12 | Basis X ₁ | solution 8 | 12 | 15 | 16 | | | 0
S ₃
E | | | C _j
C _B
12 | Basis X ₁ S ₂ | solution | 12
X ₁
A | 15
X ₂
P
Q | 16
X ₃ | S ₁ | S ₂ | S ₃ | | | C _j C _B 12 0 C _j - | $\begin{array}{c c} & \text{Basis} \\ & X_1 \\ & S_2 \\ & Z_j \end{array}$ | solution 8 | 12
X ₁
A | 15
X ₂
P | 16
X ₃ | S ₁ | S ₂ | S ₃ | | | C _j C _B 12 0 C _j - | $\begin{array}{c c} & \text{Basis} \\ & X_1 \\ & S_2 \\ \\ Z_j \\ & \text{maximum valu} \end{array}$ | solution 8 3 | 12 X ₁ A 0 unction is | 15
X ₂
P
Q | 16
X ₃
C | S ₁ | S ₂ | S ₃
E | | | C _j C _B 12 0 C _j - | Basis X ₁ S ₂ Z _j n maximum valu a) 13 | solution 8 3 e of objective fi b) -35 c) 96 | 12 X ₁ A 0 unction is d) 0 | 15
X ₂
P
Q
-9 | 16
X ₃
C | S ₁ | S ₂ | S ₃
E | | | C _j C _B 12 0 C _j Ther | $\begin{array}{c c} & \text{Basis} \\ & X_1 \\ & S_2 \\ \\ Z_j \\ & \text{maximum valu} \end{array}$ | solution 8 3 e of objective fi b) -35 c) 96 | 12 X ₁ A 0 anction is d) 0 a maximiz | I5 X ₂ P Q -9 ation problem, | 16
X ₃
C | S ₁ ½ -6 | S ₂ d 0 | S ₃
E | | | C _j C _B 12 0 C _j Ther 7. Study | Basis X ₁ S ₂ Z _j n maximum valu a) 13 y the following si | solution 8 3 e of objective for b) -35 c) 96 implex table for | 12 X ₁ A 0 unction is d) 0 a maximiz 12 | P Q Q -9 ation problem, | 16
X ₃
C
-20 | S ₁ ½ -6 [| S ₂ d 0 | S ₃ E 0 | | | C _j C _B 12 0 C _j Ther 7. Study C _j C _B | Basis X ₁ S ₂ Z _j n maximum valu a) 13 y the following si | solution 8 3 e of objective for b) -35 c) 96 implex table for solution | 12 X ₁ A 0 | P Q -9 ation problem, 15 X ₂ | 16
X ₃
C
-20 | S ₁ ½ -6 [0 S ₁ | S ₂ d 0 | S ₃ E 0 0 S ₃ | | | C _j C _B 12 0 C _j Ther 7. Study C _j C _B 12 | $\begin{array}{c c} & \text{Basis} \\ & X_1 \\ & S_2 \\ \\ Z_j \\ & \text{n maximum valu} \\ & \text{a) 13} \\ & \text{y the following simple states} \\ & & \text{Basis} \\ & & X_1 \\ \end{array}$ | solution 8 3 e of objective fi b) -35 c) 96 implex table for solution 8 | 12 X ₁ A 0 unction is d) 0 a maximiz 12 | 15 | 16
X ₃
C
-20 | S ₁ ½ -6 [| S ₂ d 0 | S ₃ E 0 | | | C _j C _B 12 0 C _j Ther 7. Study C _j C _B | $\begin{array}{c c} & \text{Basis} \\ & X_1 \\ & S_2 \\ \\ Z_j \\ & \text{n maximum valua} \\ & \text{a) 13} \\ & \text{y the following si} \\ & & \text{Basis} \\ & & X_1 \\ & & S_2 \\ \end{array}$ | solution 8 3 e of objective for b) -35 c) 96 implex table for solution | 12 X ₁ A 0 | P Q -9 ation problem, 15 X ₂ | 16
X ₃
C
-20 | S ₁ ½ -6 [0 S ₁ | S ₂ d 0 | S ₃ E 0 0 S ₃ | | Maximize $Z=5x_1+6x_2$ Subjected to $3x_1 + 8x_2 \le 8$ 14. $5x_1 + 9x_2 \le 4$ $x_1, x_2 \ge 0$ If primal LP problem has a finite solution then the dual LP problem should have [] Principal a) Finite solution b) infeasible solution c) unbounded solution d) part affiliate of technology & Selence KAVALI-524201, SPSR Nellow Dist. Another affiliatesh. | 15. | An optimal assignment requires that the maximum number of lines that | |------|---| | | An optimal assignment requires that the maximum number of lines that can be drawn through squares with zero | | 1000 | a) rows or columns b) rows and columns a) | | 16. | For a sales man who has to visit n cities which of the following are the ways of his tour plan | | | f the following are the ways of his tour plan | | | (a) n! (b) (n+1)! (c) (n-1)! (d) n | | 17. | If dual has an unbounded solution, primal has | | | (a) No feasible solution (b) unbounded to 1 | | 18. | (a) No feasible solution (b) unbounded solution (c) feasible solution (d) none of the above | | | The solution to a transportation problem with m rows and n columns is feasible, if number of positive | | | (a) m + n (b) m x n (c) m+n-1 (d) m+n+1 | | 19. | Assignment models are solved by method | | | a) Thomson's | | 20. | a) Jhonson's b) MODI c) Hungarian d) Least cost | | | What is meant by penalty in best starting solution method for transportation problems? | R15 ### B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2019 DATABASE MANAGEMENT SYSTEMS (Common to CSE & IT) Time: 3 hours Max. Marks: 70 ### PART - A (Compulsory Question) Answer the following: (10 X 02 = 20 Marks) (a) List six major steps that you would take in setting up a database for a particular enterprise. (b) What are the main functions of a database administrator? (c) Given a relation S(student, subject, marks), write a query to find the top n students by total marks, by using ranking. (d) Differentiate between procedural and non-procedural language. (e) Given a relational schema r (A, B,C, D), does A → → BC logically imply $A \rightarrow \rightarrow B$ and $A \rightarrow \rightarrow C$? If yes prove it, else give a counter example. Explain why 4NF is a normal form more desirable than BCNF. - (g) Suppose that there is a database system that never fails. Is a recovery manager required for this system? Justify your answer. - (h) Database-system implementers have paid much more attention to the ACID properties than have file-system implementers. Why might this be the case? - (i) List the physical storage media available on the computers you use routinely. Give the speed with which data can be accessed on each medium. - (j) How does the remapping of bad sectors by disk controllers affect data retrieval rates? ### PART - B (Answer all five units, 5 X 10 = 50 Marks) ### UNIT-I - (a) Explain the difference between two-tier and three-tier architectures. Which is better suited for Web - (b) Discuss the relative merits of procedural and nonprocedural languages. (a) Show that, in SQL, < > all is identical to not in. (b) Write the following queries in SQL, using the university schema: (i) Create a new course "CS-001", titled "Weekly Seminar", with 0 credits. (ii) Create a section of this course in Autumn 2009, with sec id of 1. (iii) Enrol
every student in the Comp. Sci. department in the above section. (iv) Delete enrolments in the above section where the student's name is Chavez. (v) Delete the course CS-001. What will happen if you run this delete statement without first deleting UNIT - II (a) Write the following queries in relational algebra, using the university schema: (Assume relevant (i) Find the titles of courses in the Comp. Sci. department that have 3 credits. (ii) Find the IDs of all students who were taught by an instructor named Einstein; make sure there (iii) Find the highest salary of any instructor. (iv) Find all instructors earning the highest salary (there may be more than one with the same (v) Find the enrolment of each section that was offered in Autumn 2009. (b) Describe how the theta-join operation can be extended so that tuples from the left, right, or both relations are not lost from the result of a theta join. B-/ Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. R15 The execution of a trigger can cause another action to be triggered. Most database systems place a limit on how deep the nesting can be. Explain why they might place such a limit. (b) Suppose there are two relations r and s, such that the foreign key B of r references the primary key A of s. Describe how the trigger mechanism can be used to implement the on delete cascade option, when a tuple is deleted from s. UNIT - III 6 (a) Explain how functional dependencies can be used to indicate the following: A one-to-one relationship set exists between entity sets student and instructor. A many-to-one relationship set exists between entity sets student and instructor. (b) Use Armstrong's axioms to prove the soundness of the pseudo-transitivity rule. OR (a) Compute the closure of the following set F of functional dependencies for relation schema $A \rightarrow BC$ CD→F $B \rightarrow D$ $E \rightarrow A$ List the candidate keys for R. (b) Lossless-join decomposition implicitly assumes that attributes on the left-hand side of a functional dependency cannot take on null values. What could go wrong on decomposition, if this property is UNIT - IV (a) Justify the following statement: Concurrent execution of transactions is more important when data must be fetched from (slow) disk or when transactions are long, and is less important when data are in memory and transactions are very short. (b) Why do we emphasize conflict serializability rather than view serializability? Justify your answer with OR (a) What is a cascadeless schedule? Why is cascadelessness of schedules desirable? Are there any circumstances under which it would be desirable to allow non-cascadeless Consider a database for a bank where the database system uses snapshot isolation. Describe a particular scenario in which a non-serializable execution occurs that would present a problem for the UNIT - V 10 (a) Compare and contrast on various file organizations. (b) In the variable-length record representation, a null bitmap is used to indicate if an attribute has the (i) For variable length fields, if the value is null, what would be stored in the offset and length fields? (ii) In some applications, tuples have a very large number of attributes, most of which are null. Can you modify the record representation such that the only overhead for a null attribute is the single bit OR 11 Explain in detail about B+ trees. Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. R15 ### B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2019 SWITCHING THEORY & LOGIC DESIGN (Common to ECE & EIE) Time: 3 hours Max. Marks: 70 ### PART - A (Compulsory Question) Answer the following: (10 X 02 = 20 Marks) 1 - (a) Subtract the following hexadecimal numbers: F27-B9E - (b) What are the universal gates? - What is the difference between prime implicants and essential prime implicants? (c) - (d) Why is minimization of switching functions required? - (e) Realize a half adder using only NAND gates. - What are the applications of Multiplexers? (f) - (g) What is meant by race around condition in flip-flops? - (h) How to convert JK Flip-flop to D Flip-flop? - What are the types of ROMs? (i) - What is the basic architecture of PLA? (j) ### PART - B (Answer all five units, 5 X 10 = 50 Marks) UNIT - I - Perform the following system conversions (a) - (i) $(67.24)_8 = (?)_2$ - (ii) $(11100.1001)_2 = (?)_{16}$ - (iii) (BC1.30)₁₆ = (?)₂ - (iv) $(10111.0111)_2 = (?)_8$ - (v) $(67.67)_8 = (?)_{10}$ - Perform subtraction with the following unsigned decimal numbers by taking 10's complement of the subtrahend: (i) 1200-250. (ii) 1753-8640 OR - (a) State and prove Demorgan's theorems. 3 - (b) Simplify the following Boolean algebraic expressions and draw a block diagram of the circuit for each simplified expression using AND and OR gates: - (i) AB'C' + A'B'C' + A'BC' + A'B'C. - (ii) A'BC + AB'C + A'BC + ABC' + AB'C' + A'BC' + A'B'C'. UNIT - II - (a) Using K-map, determine the minimal Product-of-Sums expression for the following minterms: m1 + m3 + m5 + m7 + m12 + m13 + m8 + m9 - (b) Minimize the following Boolean functions using K-map. $F(A,B,C,D) = \Sigma m (1,3,5,8,9,11,15) + d (2,13)$ - (a) Realize OR, AND, NOT gates using only NAND gates. - (b) Using the tabulation method, obtain the minimal expression for: $f = \Sigma m (0,1,5,7,8,10,14,15).$ Principal Contd. in page 2 PARVATHAREDDY BABUL REDDY Page 1 of PISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. R15 UNIT - III - 6 (a) Explain the operation of 4-bit binary adder-subtractor. - (b) Compare encoders and decoders. OR - 7 (a) Distinguish between combinational and sequential logic circuits. - (b) Realize a full subtractor using a 3-line to 8-line decoder. UNIT - IV - 8 (a) Design MOD-6 asynchronous counter using JK-Flip Flop. - (b) Explain the working of 4 bit ring counter. OR - (a) Design a Mod-5 Synchronous counter using T flip-Flop. - (b) Compare synchronous and asynchronous sequential circuits. UNIT - V - (a) Explain about PAL, PLA and types of ROMs. 10 - (b) Implement the following Boolean function using PAL. $F(A,B,C,D) = \Sigma m (1,2,8,12,13)$ - (a) Design a combinational circuit using a PROM. The circuit accepts a 3-bit binary number and generates its equivalent XS-3 code. (b) Compare CPLDs and FPGAs. BIK Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE: KAVALI ### G ## MID EXAMINATION - II DATE:04/11/2019 Time: 2.00 PM TO 4.00 PM IV B.Tech, I-Sem (16 batch) (R15) ## TIME TABLE | 16/11/2019 | Digital Signal processing | Measurement | Digital Image
Processing | Software Project
Management | |------------|--|--|--------------------------------|-----------------------------------| | 15/11/2019 | Power Quality | Modern
Manufacturing
Methods | Radar Systems | Software
Architecture | | 14/11/2019 | Power System Operation and Control | Automobile Engineering | Data Communications & Networks | Mobile Application
Development | | 13/11/2019 | Energy Auditing & Demand Side Management | Production &
Operations
Management | Microwave
Engineering | Information Security | | 12/11/2019 | Electrical Distribution Systems | CAD/CAM | Embedded
Systems | Grid & Cloud
Computing | | 11/11/2019 | (AN) Utilization of Electrical Energy | Management
Science | Optical Fiber
Communication | Management
Science | | | BRANCH | ME | ECE | CSE | B. /- Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. EXAM SECTION INCHARGE # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI DATE: 04/11/2019 MID EXAMINATION - II III B.Tech, I-Sem. (17 BATCH) (R15) Time: 9.30 AM TO 11.30 AM ## TIME TABLE | BRANCH | | Flui
8 | ECE Con | CSE Ope | |--------------------|---|--|---|---| | 11/11/2019
(FN) | Electrical
Machines – III | Fluid Mechanics
& Hydraulic
Machines | Computer | Operating
System | | 12/11/2019
(FN) | Linear and Digital
IC Analysis | Thermal
Engineering - II | Antenna & Wave
Propagation | Computer | | 13/11/2019
(FN) | Power Electronics | Dynamics of
Machinery | Digital
Communication
System | Object Oriented
Analysis and
Design | | 14/11/2019
(FN) | Electric Power
Transmission
Systems | Entrepreneurship | Linear Integrated
Circuits
Applications | Principles of
Programming
Languages | | 15/11/2019
(FN) | Electrical | Design of Machine
Members - I | Digital System Design | Software Testing | | 16/11/2019
(FN) | Network System
Synthesis | Machine Tools | Linux
Programming &
Scripting | Introduction to
Big Data | ## EXAM SECTION INCHARGE 1. All the students must wear ID Cards. OTE: 2. Students will not be allowed into the Examination hall after 9.30 A.M Materials, Cell phones are strictly prohibited into the Examination halls. 8. / PRINCIPAL VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. PARVATHAREDDY BABUL REDDY Principal # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI Date: 04/11/19 ## MID EXAMINATION - II Year: II B.Tech, I-Sem (18 BATCH) Time: 9.30 AM TO 11.30 AM (FN) ## TIME TABLE | | | 1 | | | | |----------|------|--------------------------------------|---|---|--| | 16/11/19 | (FN) | Data Structutres |
Engineering Drawing for Mechanical Engineers | Electrical | Database
Management
Systems | | 15/11/19 | (FN) | Electrical machines | Management
Economics &
financial Analysis | Probability Theory
and Stochastic
Process | Digital Logic Design | | 14/11/19 | (FN) | Electronics
Devices &
Circuits | Thermodynamics | Signals and Systems | Basic Electrical
and Electronics
Engineering | | 13/11/19 | (FN) | Control System
Engineering | Mechanics of Solids | Switching Theory and Logic Design | Mathematics-III | | 12/11/19 | (N) | Electrical
Circuits - II | Engineering | Mathematics-III | Managerial
Economics and
Financial
Analysis | | 11/11/19 | (LL) | Mathematics - III | Mathematics - III | Electronic Devices and Circuits | Discrete | | BRANCH | | EEE | ME | ECE | CSE | Principal PARVATHAREDDY BABUL REDDY VISYODAYR MINISTUPE DE TECHNOLOGY & SCIENCE KAVALL 524201, SDSD Mallora Dist. Andrewoodash ### (C) # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI I B.Tech I Sem (19 BATCH) MID EXAMINATION - II Time: 9.00 AM TO 10.30 AM. ### TIME TABLE | BRANCH | 20/12/2019
(FN) | 21/12/2019
(FN) | 23/12/2019
(FN) | 24/12/2019
(FN) | |--------|--------------------|-------------------------------|---------------------------|---| | EEE | ALGEBRA & CALCULUS | PROBLEM SOLVING & PROGRAMMING | COMMUNICATIVE ENGLISH - I | APPLIED PHYSICS | | ME | ALGEBRA & CALCULUS | PROBLEM SOLVING & PROGRAMMING | ENGINEERING CHEMISTRY | 按照 衛衛 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 | | ECE | ALGEBRA & CALCULUS | PROBLEM SOLVING & PROGRAMMING | COMMUNICATIVE ENGLISH - I | APPLIED PHYSICS | | CSE | ALGEBRA & CALCULUS | PROBLEM SOLVING & PROGRAMMING | CHEMISTRY | · · · · · · · · · · · · · · · · · · · | 8 · / Principal Principal PARVATHAREDDY BABUL REDDY VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. Exam Section Incharge DATE: 4/3/2020 # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI I B.Tech II Sem (19 BATCH) MID EXAMINATION - I Time: 9.00 AM TO 10.30 AM. ### TIME TABLE | BRANCH | 11/3/2020
(FN) | 12/3/2020
(FN) | 13/3/2020
(FN) | 16/3/2020
(FN) | 17/3/2020
(FN) | |--------|---|--|------------------------|-------------------|------------------------------| | EEE | Basic Electrical &
Electronics Engineering | Differential Equations and Vector Calculus | Chemistry | Data Structures | Engineering Graphics | | ME | Basic Electrical & Electronics Engineering | Differential Equations and Vector Calculus | Engineering
Physics | Data Structures | Communicative
English - I | | ECE | Network Theory | Differential Equations and Vector Calculus | Chemistry | Data Structures | Engineering Graphics | | CSE | Basic Electrical &
Electronics Engineering | Probability and
Statistics | Applied Physics | Data Structures | Communicative
English - I | 8 - Principal Lillicipal Principal PARVATHAREDDY BABUL REDDY VISYODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALL-524201, SPSR Nellore Dist. Andhrapradesh. Exam Section Incharge # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI II B.Tech II Sem (18 BATCH) MID EXAMINATION - I Time: 9.30 AM TO 11.30 AM. ### TIME TABLE | BRANCH | 2/3/2020
(FN) | 3/3/2020
(FN) | 4/3/2020
(FN) | 5/3/2020
(FN) | | 6/3/2020
(FN) | |--------|---|------------------------------------|------------------------------------|--|-----------------|--| | | Electrical
Machines - II | Analog
Electronics
Circuits | Electro Magnetic
Fields | Mathematics – IV | Gen | Electric Power
Generating Systems | | ME | Thermal
Engineering - I | Manufacturing
Technology | Kinematics of
Machines | Probability &
Statistics | Basi | Basic Electrical & Electronics Engineering | | ECE | Mathematics-IV Electronic Circuits Analysis | Electronic
Circuits
Analysis | Analog
Communication
Systems | Electro Magnetic
Theory &
Transmission Lines | Data St | Data Structures | | CSE | Probability &
Statistics | Software
Engineering | Computer
Organization | Microprocessors & Interfacing | Object (Program | Object Oriented Programming using | 1. All the students must wear ID Cards. NOTE: Students will not be allowed into the Examination hall after 9.30 A.M. Materials, Cell Phones are strictly prohibited into the Examination Halls. Exam Section Incharge 8. Frincipal VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhrapradesh. PARVATHAREDDY BABUL REDDY DATE:24/2/2020 # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI Time: 9.30 AM TO 11.30 AM. MID EXAMINATION - I III B.Tech II Sem (17 BATCH) ### TIME TABLE | BRANCH | EEE | ME | ECE | CSE | |------------------|------------------------------------|---|---|--------------------------------| | 2/3/2020
(FN) | Power Semiconductor
Drives | Operations Research | Digital Signal
Processing | Data Warehousing & | | 3/3/2020
(FN) | Programmable
Logic Controllers | Design of
Machine
Members - II | Micro Processors
& Micro
Controllers | Compiler Design | | 4/3/2020
(FN) | Power System
Analysis | Heat Transfer | Managerial Economics & Financial Analysis | Design Patterns | | 5/3/2020
(FN) | Management
Science | Finite Element
Methods | Electronic
Measurements &
Instrumentation | Design &Analysis of Algorithms | | 6/3/2020
(FN) | Power System protection | Mental Forming
Process | VLSI Design | Web & Internet
Technologies | | 7/3/2020
(FN) | Microprocessors & Microcontrollers | Non
Conventional
Sources of
Energy | Industrial
Electronics | Artificial | NOTE 1. All the students must wear ID Cards. Students will not be allowed into the Examination hall after 9.30 A.M. Materials, Cell Phones are strictly prohibited into the Examination Halls. Exam Section Incharge VISVODAYA INSTITUTE OF TECHNOLOGY 8 SCIENCE KAVALI-524201, SPSR Nellore Dist. Andhraptatesh. PARVATHAREDDY BABUL REDDY Principal DATE:27/1/2020 # PBR VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE :: KAVALI IV B.Tech II Sem (16 BATCH) MID EXAMINATION - I Time: 9.30 AM TO 11.30 AM. | 4/2/2020 HVDC TRANS GAS TURBINS & JE RF Integrated Circuits | |---| | Enabling Technologies for Data Science | | DE Integrated Oice ite | | GAS TURBINS & JET PROPULSION | | HVDC TRANSMISSION | | 4/2/2020 (FN) | NOTE: 1. All the students must wear ID Cards. 2. Students will not be allowed into the Examination hall after 9.30 A.M 3. Materials, Cell phones are strictly prohibited into the Examination halls. Exam Section Incharge